Thông tin tài liệu
Nhan đề : | Balancing Accuracy and Interpretability in Credit Risk Modeling: Evidence from Peer-to-Peer Lending |
Tác giả : | Thuy Tien Dinh |
Chủ đề : | Peer-to-Peer Lending Credit Risk; Assessment Logistic; Regression Random; Forest Weight of Evidence Encodings |
Năm xuất bản : | 2025 |
Nhà xuất bản : | Thang Long Journal of Science |
Số tùng thư/báo cáo: | Vol. 4 No. 1 (2025) Mathematics and Mathematical Sciences;105-129 |
Tóm tắt : | Accurate credit risk assessment is crucial for the stability and growth of peer-to-peer (P2P) lending platforms. This study investigates the effectiveness of machine learning models in predicting loan defaults using historical Lending Club data. We evaluate logistic regression, decision tree, and random forest, employing feature engineering techniques like one-hot and weight of evidence encoding. Model performance is assessed using K-fold cross-validation and metrics such as accuracy and AUC. To enhance model interpretability, we utilize explainable AI techniques like LIME and SHAP, enabling lenders and borrowers to understand the factors driving loan defaults. Our findings demonstrate that while complex models offer higher predictive accuracy, simpler models like logistic regression with WoE encoding provide a suitable balance between accuracy and interpretability, fostering trust and responsible lending within the P2P lending ecosystem. |
URI: | http://thuvienso.thanglong.edu.vn//handle/TLU/13286 |
Bộ sưu tập | Số 1 Tập C4 - 2025 |
XEM MÔ TẢ
0
XEM & TẢI
2
Danh sách tệp tin đính kèm: