Tìm kiếm theo: Chủ đề Nevanlinna theory

Duyệt theo: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Hoặc nhập chữ cái đầu tiên:  
Hiển thị kết quả từ 1 đến 3 của 3
  • TCTL.0000090_Degeneracy theorems for holomorphic mapings from a complex disc with finite growth index.pdf.jpg
  • -


  • Tác giả : Nguyen Thi Nhung (2024)

  • Abstract. In this paper, we prove degeneracy theorems for holomorphic mappings from a complex disc Δ(R) ⊂ C with finite growth index into Pn(C) sharing hyperplanes in general position. We further consider the case that intersecting points of the mappings and the hyperplanes with multiplicities more than a certain number do not need to be counted. These results generalize the previous degeneracy theorems for meromorphic mappings from Cm into Pn(C).

  • TCTL.0000106_Về hàm phân hình là nghiệm của phương trình vi-sai phân tuyến tính thông qua chung nhau một phần giá trị và độ tăng của nó.pdf.jpg
  • Bài báo/Newspaper


  • Tác giả : Thin Van Nguyen (2025)

  • In this paper, we investigate shared value problems related to a meromorphic function of hyper order less than one and its linear differencedifferential polynomial. In general, under certain conditions of sharing values of the meromorphic functions and their difference-differential polynomial, a given meromorphic function must satisfy a difference-differential equation. Furthermore, we also study the order of meromorphic solutions of some classes of difference-differential equations.

  • TCTL.0000092_Uniqueness of meromorphic mappings partially shared hypersurfaces.pdf.jpg
  • Bài báo/Newspaper


  • Tác giả : Nguyen Van Thin (2024)

  • The purpose of this paper is to study uniqueness problem of meromorphic mapping from Cm into the complex space Pn(C) sharing partial fixed and moving hypersurfaces. Using the second main theorems due to S. D. Quang and D. P. An [12, 13], we obtain some uniqueness results. Our results are improved some before results in this trend. In our best knowledge, there are not any uniqueness results of meromorphic mapping partially shared hypersurfaces up to now.