Bài báo/NewspaperAuthors: Thuy Tien Dinh (2025)
Accurate credit risk assessment is crucial for the stability and growth of peer-to-peer (P2P) lending platforms. This study investigates the effectiveness of machine learning models in predicting loan defaults using historical Lending Club data. We evaluate logistic regression, decision tree, and random forest, employing feature engineering techniques like one-hot and weight of evidence encoding. Model performance is assessed using K-fold cross-validation and metrics such as accuracy and AUC. To enhance model interpretability, we utilize explainable AI techniques like LIME and SHAP, enabling lenders and borrowers to understand the factors driving loan defaults. Our findings demonstrat...